SPA-resistant Scalar Multiplication Hyperellipitc Curve Cryptosystems Combining Divisor Decomposition Technique and Joint Regular Form

T. Akishita, M. Katagi, and I. Kitamura Sony Corporation

In my talk ...

- Hyperelliptic Curve Cryptosystems
 - □ Genus2, F₂ⁿ

- New countermeasure against Simple Power Analysis
 - Divisor Decomposition Technique (DDT)
 - Joint Regular Form (JRF)

Agenda

- Introduction (1): Simple Power Analysis
- Introduction (2): Theta Divisors on HECC
- Proposed Method
 - Divisor Decomposition Technique (DDT)
 - Joint Regular Form (JRF)
 - Marriage of DDT + JRF
- Concluding Remarks

- Introduction (1): Simple Power Analysis
- Introduction (2): Theta Divisors on HECC
- Proposed Method
 - Divisor Decomposition Technique (DDT)
 - Joint Regular Form (JRF)
 - Marriage of DDT + JRF
- Concluding Remarks

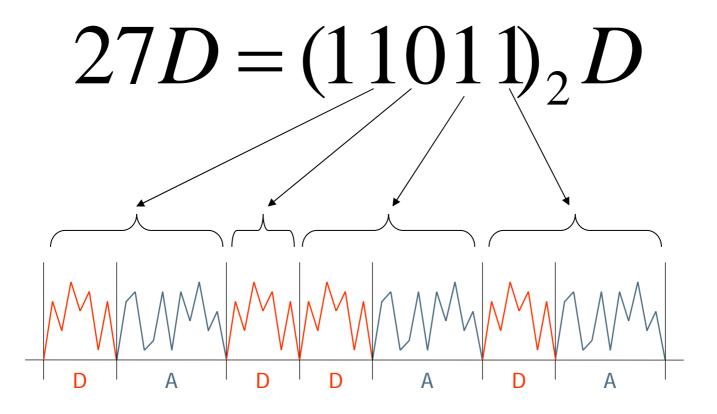
Simple Power Analysis

Simple Power Analysis

- Simple Power Analysis (SPA)
 - Single observation of power consumption trace
 - Extract some secret information

- Elliptic curve / Hyperelliptic curve cryptosystems
 - dD : Scalar Multiplication
 - d: Secret information, D: point / divisor

Binary method



Double-and-add always method

Double-and-add always Method

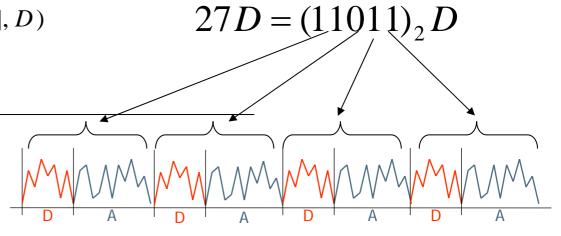
Input: $D, d = (d_{m-1} \cdots d_0)_2$

Output: dD

- 1. $Q[0] \leftarrow D$
- 2. for i = m 2 downto 0 $Q[0] \leftarrow \mathbf{DBL} (Q[0])$ $Q[1] \leftarrow \mathbf{ADD} (Q[0], D)$

 $Q[0] \leftarrow Q[d_i]$

3. return Q[0]



- Introduction (1): Simple Power Analysis
- Introduction (2): Theta Divisors on HECC
- Proposed Method
 - Divisor Decomposition Technique (DDT)
 - Joint Regular Form (JRF)
 - Marriage of DDT + JRF
- Concluding Remarks

Theta Divisors on HECC

Hyperelliptic Curve

Hyperelliptic Curve

$$y^2 + h(x)y = f(x)$$
 $f(x)$ monic polynomial, $\deg f = 2g + 1$
 $h(x)$ Polynomial, $\deg h \leq g$

- genus, g
 - Curves are characterized by genus
 - genus 1

Elliptic curves

genus 2
$$f(x) = x^5 + f_4 x^4 + f_3 x^3 + f_2 x^2 + f_1 x + f_0$$
$$h(x) = h_2 x^2 + h_1 x + h_0$$

• genus 3

Divisor

- Divisor
 - Points on hyperelliptic curve do not form a group
- Representation of divisor

$$D = (u(x), v(x)) \in J(F_{2^m}) \Leftrightarrow u(x), v(x) \in F_{2^m}[x].$$

- Genus 2
 - $u(x) = x^2 + u_1 x + u_0, v(x) = v_1 x + v_0$
- Weight w(D)
 - Degree of polynomial u(x)
 - Weight 2 divisor

General Divisor

Special Divisor: theta divisor

the weight of D is smaller than genus

"Special" means low probability

Genus 2 case

```
general divisor D=(x^2+u_1x+u_0,\ v_1x+v_0) \qquad //\ w(D)=2 theta divisor D=(x+x_0,y_0) \qquad //\ w(D)=1
```

Group op. with theta divisor is fast!

Group operations	Cost	
DBL ADD	1I + 22M + 5S 1I + 22M + 3S	"general" "general"+"general"
TDBL	1I + 5M + 2S	"theta"
TADD	1I + 10M + 1S	"genral" + "theta"

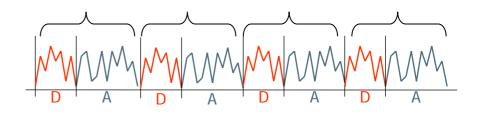
I: inversion, M: multiplication, S: Squaring

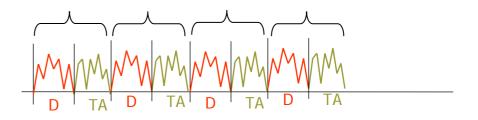
DAA_TD: speed up the DAA_GD

- DAA_GD
 - Double-and-add-always method using General Divisors
- DAA_TD
 - Double-and-add-always method using Theta Divisors

$$27D = (11011)D$$
 general divisor

$$27D_0 = (11011)D_0$$





theta divisor

DAA_TD: Motivation

- DAA_TD
 - is much faster than DAA_GD.
 - But, application is limited
 - the base point (fixed point)
 - theta divisor is chosen

How to apply group operations with theta divisor to speed up scalar multiplication using a general divisor?

Our Idea

$$kD = kD_1 + kD_2$$

Decomposing into Two Theta Divisors

(1) Divisor Decomposition Technique (DDT)

$$= kD_1 + (k + 1)D_2 - D_2$$

Simultaneous scalar multiplication with JRF

(2) Joint Regular Form (JRF)

- Introduction (1): Simple Power Analysis
- Introduction (2): Theta Divisors on HECC
- Proposed Method
 - Divisor Decomposition Technique (DDT)
 - Joint Regular Form (JRF)
 - Marriage of DDT + JRF
- Concluding Remarks

Divisor Decomposition Technique (DDT)

Divisor Decomposition Technique

DDT

□ A general divisor D → theta divisors D₁ +D₂

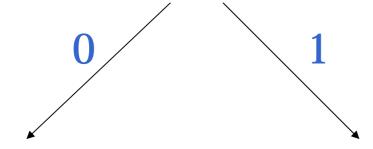
- D=(u(x),v(x))=(x²+u₁x+u₀, v₁x+v₀) □ u_i,v_i \mathbf{F}_2 ^m
- $D_1 = (x + x_1, y_1), D_2 = (x + x_2, y_2)$ □ u_i, v_i \mathbf{F}_2^m

DDT condition

General divisor

$$D = (x^2 + u_1 x + u_0, v_1 x + v_0)$$

$$Tr(u_0/u_1^2)$$
 Check the reducibility of $x^2+u_1x+u_0$ over F_2^n



D1+D2

Fail to decompose

DDT is efficient?

- \blacksquare kD : kD₁+kD₂
- Direct computation of kD₁+kD₂
 - Slower than kD
 - 2 times TADD < ADD</p>
- Any other ideas?

$$kD_1+kD_2 = kD_1 + (k+1)D_2 - D_2$$

Simultaneous multiplication of $kD_1+(k+1)D_2$

We need good representation of (k,k+1)

- Introduction (1): Simple Power Analysis
- Introduction (2): Theta Divisors on HECC
- Proposed Method
 - Divisor Decomposition Technique (DDT)
 - Joint Regular Form (JRF)
 - Marriage of DDT + JRF
- Concluding Remarks

Joint Regular Form (JRF)

Simultaneous Scalar Multiplication

- Simultaneous scalar multiplication of kP+IQ
- Shamir's trick
- Ex. $35P+22Q = (100011)_2P+(010110)_2Q$

$$35 = (1 \ 0 \ 0 \ 1 \ 1)$$

$$22 = (0 \ 1 \ 0 \ 1 \ 1 \ 0)$$

$$P \longrightarrow 2P \xrightarrow{+Q} 2P + Q \longrightarrow 4P + 2Q \longrightarrow 8P + 4Q \xrightarrow{+Q} 8P + 5Q$$

$$\longrightarrow 16P + 10Q \xrightarrow{+(P+Q)} 17P + 11Q \longrightarrow 34P + 22Q \xrightarrow{+P} 35P + 22Q$$

Power Analysis to Simultaneous Scalar Multiplication

Shamir's method

Ex.
$$35P+22Q = (100011)_2P+(010110)_2Q$$

$$P \longrightarrow 2P \xrightarrow{+Q} 2P+Q \longrightarrow 4P+2Q \longrightarrow 8P+4Q \xrightarrow{+Q} 8P+5Q$$

$$\longrightarrow 16P+10Q \xrightarrow{+(P+Q)} 17P+11Q \longrightarrow 34P+22Q \xrightarrow{+P} 35P+22Q$$

Vulnerable to SPA

■ Inserting dummy operation can prevent SPA in exchange for efficiency

Joint Regular Form (JRF)

- (k, l) is (even, odd) or (odd, even)
- Joint Regular Form (JRF) of (k, l):

- Always repeat doubling and addition when computing kP+IQ
 - SPA-resistance without dummy operation because of regularity

Simultaneous Scalar Multiplication with JRF

Need not P+Q!

How to Construct JRF: General Case

- Transform binary representation $k = (k_{n-1}...k_0)_2$, $I = (I_{n-1}...I_0)_2$ to JRF $k_{n-1}...k_0$, $I_{n-1}...I_0$ from LSB
 - $(k_0, l_0) = (0, 1) \text{ or } (1,0)$
 - If $(k_1, l_1) = (0, 1)$ or (1,0), no transformation is needed
 - If $(k_1, l_1) = (0, 0)$, one of following transformation is done

If $(k_1, l_1) = (1,1)$, one of following transformation is done and carry over +1 to k_2 or l_2

How to construct JRF: (d, d+1)

$$= dD_1 + (d+1)D_2 - D_2$$

JRF

$$27 = (11011)_{2}$$

 $28 = (11100)_{2}$
 $27 = < 11011>_{2}$
 $28 = < 10010>$

$$= d+1=2^n+ i^{n-1}(d_i-1)2^i$$

- Introduction (1): Simple Power Analysis
- Introduction (2): Theta Divisors on HECC
- Proposed Method
 - Divisor Decomposition Technique (DDT)
 - Joint Regular Form (JRF)
 - Marriage of DDT + JRF
- Concluding Remarks

Marriage of DDT and JRF

Proposed Method: DDT + SimJRF

(1) Decomposing into Two Theta Divisors

$$kD = kD_1 + kD_2$$

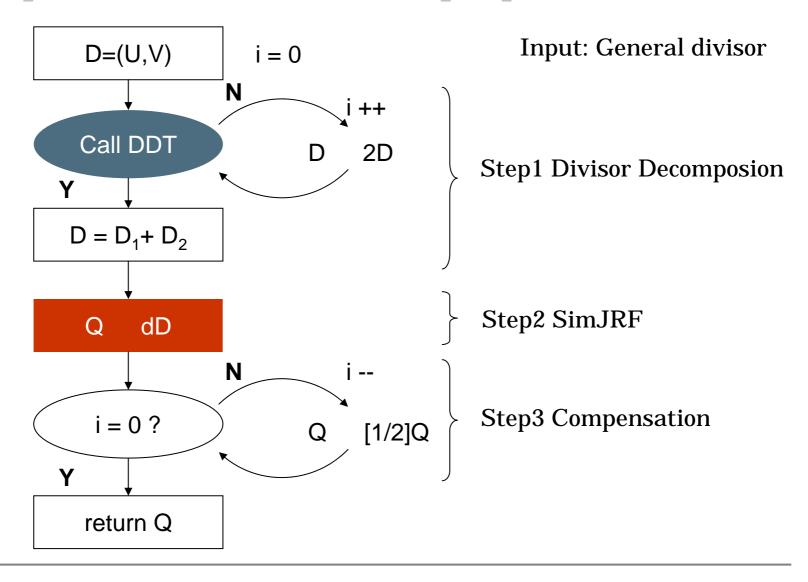
= $kD_1 + (k + 1)D_2 - D_2$

(2) Simultaneous scalar multiplication with JRF

Any Genral Divisor cannot be decomposed ...

- General Divisor D=(u(x),v(x))
 - DDT condition
 - u(x) is reducible over F₂^m
 - u(x) is irreducible over F₂^m Not decomposed
- In order to apply DDT to Any general divisors,
 - Use inverse map of divisor
 - $dD = d((1/2)^i 2^i D) = (1/2)^i d(2^i D)$
 - Repeat "doubling" until DDT returns success!
 - Correct the value using "halving"[10]

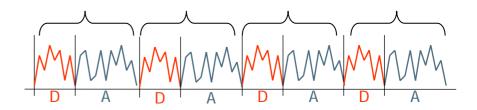
Complete Procedure of the proposed method



DDT+SimJRF

DAA_GD

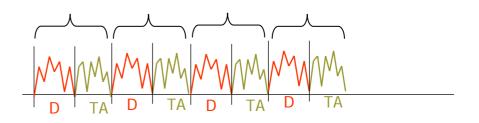
$$27D = (11011)D$$



DDT+SimJRF

Always add +/- D_1 or +/- D_2

$$27D = <11011>D_1 \\ + <100100>D_2$$



Comparison of scalar multiplication

DAA_GD, DAA_TD, DDT+SimJRF

Table 2. Comparison of scalar multiplication (160bit)

Method	Divisor	Dummy	Cost
DAA_GD	general	use	318I + 6996M + 1272S (9667.2M)
DAA_TD	theta	use	318I + 5084M + 951S (7723.1M)
DDT + SimJRF	general	NOT use	325I + 5160.5M + 967S
_	500		+2.5SR + 3H + 4T (7860.3M)

DDT+SimJRF is 18.7% faster than DAA_GD

1.8% increase compared to DAA_TD in spite of extra cost (DDT)

Concluding Remark

DDT+JRF

- Genus 2 HECC over binary field
- Efficient SPA-resistant scalar multiplication
 - DDT
 - JRF
- 18.7% faster than DAA_GD

JRF

- New Signed Representation for Two integers
- Application to HECC (this talk)
- Have nice applications for ECC
 - Lim-Lee method, GLV method, BRIP,